ELSEVIER

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Potent allelopathy and non-PSTs, non-spirolides toxicity of the dinoflagellate *Alexandrium leei* to phytoplankton, finfish and zooplankton observed from laboratory bioassays

Lixia Shang ^{a,b,c}, Yangbing Xu ^d, Chui Pin Leaw ^e, Po Teen Lim ^e, Jiuming Wang ^f, Junhui Chen ^f, Yunyan Deng ^{a,b,c}, Zhangxi Hu ^{a,b,c,*}, Ying Zhong Tang ^{a,b,c,*}

- ^a CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- b Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- ^c Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- ^d Fisheries College, Ocean University of China, Qingdao 266003, China
- ^e Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
- f Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Oingdao 266061, China

HIGHLIGHTS

- A. leei from Malaysia showed variable allelopathic effects to 13 microalgal species.
- *A. leei* exhibited potent toxicity to finfish, rotifer, and brine shrimp.
- Allelochemicals and toxins of A. leei are present both intra- and extra-cellularly.
- Allelopathy and toxicity of A. leei are not caused by PSTs and spirolides.
- Allelopathic and toxic A. leei blooms may pose threats to fishery and ecosystems.

GRAPHICAL ABSTRACT

Allelopathy of Al. leei to Microalgae Toxicity of Al. leei to Animals Ak. sanguinea C. marina M. polykrikoides O. melastigma B. plicatilis Ar. salina

Immobilized

Dead

ARTICLE INFO

Article history: Received 31 December 2020 Received in revised form 10 March 2021 Accepted 11 March 2021 Available online 17 March 2021

Editor: Daniel Wunderlin

Keywords: Harmful algal blooms (HABs) Ichthyotoxicity Allelochemicals Marine medaka Brine shrimp Rotifer

ABSTRACT

The dinoflagellate genus *Alexandrium* has been well known for causing paralytic shellfish poisoning (PSP) worldwide. Several non-PSP toxin-producing species, however, have shown to exhibit fish-killing toxicity. Here, we report the allelopathic activity of *Alexandrium leei* from Malaysia to other algal species, and its toxicity to finfish and zooplankton, via laboratory bioassays. Thirteen microalgal species that co-cultured with *Al. leei* revealed large variability in the allelopathic effects of *Al. leei* on the test algae, with the growth inhibition rates ranging from 0 to 100%. The negative allelopathic effects of *Al. leei* on microalgae included loss of flagella and thus the motility, damages of chain structure, deformation in cell morphology, and eventually cell lysis. The finfish experienced 100% mortality within 24 h exposed to the live culture (2000–6710 cells·mL⁻¹), while the rotifer and brine shrimp exhibited 96–100% and 90–100% mortalities within 48 h when exposed to 500–6000 cells·mL⁻¹ of *Al. leei*. The mortality of the test animals depended on the *Al. leei* cell density exposed, leading to a linear relationship between mortality and cell density for the finfish, and a logarithmic relationship for the two zooplankters. When exposed to the treatments using *Al. leei* whole live culture, cell-free culture medium, extract of algal cells in the f/2-Si medium, extract of methanol, and the re-suspended freeze-and-thaw algal cells, the test organisms (*Ak. sanguinea* and rotifers) all died at the cell density of 8100 cells·mL⁻¹ within 24 h. Toxin analyses by HILIC-ESI-TOF/MS and LC-ESI-MS/MS demonstrated that *Al. leei* did not produce PSP-toxins and 13-desmethyl

^{*} Corresponding authors at: Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China. *E-mail addresses*: zhu@qdio.ac.cn (Z. Hu), yingzhong.tang@qdio.ac.cn (Y.Z. Tang).