Peer

Investigating *Escherichia coli* habitat transition from sediments to water in tropical urban lakes

Boyu Liu¹, Choon Weng Lee^{1,2}, Chui Wei Bong^{1,2} and Ai-Jun Wang^{3,4}

¹ Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia

² Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia

³ Laboratory of Coastal and Marine Geology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China

⁴ Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen, Fujian, China

ABSTRACT

Background. *Escherichia coli* is a commonly used faecal indicator bacterium to assess the level of faecal contamination in aquatic habitats. However, extensive studies have reported that sediment acts as a natural reservoir of *E. coli* in the extraintestinal environment. *E. coli* can be released from the sediment, and this may lead to overestimating the level of faecal contamination during water quality surveillance. Thus, we aimed to investigate the effects of *E. coli* habitat transition from sediment to water on its abundance in the water column.

Methods. This study enumerated the abundance of *E. coli* in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment *E. coli* to the water column, and evaluated the effects of habitat transition on *E. coli* abundance in the water column after accounting for its decay in the water column.

Results. The abundance of *E. coli* in the sediment ranged from below detection to 12,000 cfu g⁻¹, and was about one order higher than in the water column (1 to 2,300 cfu mL⁻¹). The habitat transition rates ranged from 0.03 to 0.41 h⁻¹. In contrast, the *E. coli* decay rates ranged from 0.02 to 0.16 h⁻¹. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study.

Discussion. Our study provided a possible explanation for the persistence of *E. coli* in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of *E. coli* from sediments to water column.

Subjects Ecology, Microbiology, Freshwater Biology, Environmental Contamination and Remediation

Keywords Escherichia coli, Faecal indicator bacteria, Sediment, Decay rate, Habitat transition

INTRODUCTION

Faecal indicator bacteria (FIB) are a group of bacteria used to evaluate water faecal contamination. Ideally, FIB should be of faecal origin only and not grow in the extraintestinal environment (*Rochelle-Newall et al., 2015*). Furthermore, the abundance of FIB should correlate with the presence of faecal contamination-related pathogen.

Submitted 26 July 2023 Accepted 9 November 2023 Published 11 January 2024

Corresponding authors Choon Weng Lee, lee@um.edu.my Ai-Jun Wang, wangaijun@tio.org.cn

Academic editor Liang Wang

Additional Information and Declarations can be found on page 18

DOI 10.7717/peerj.16556

Copyright 2024 Liu et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS