First report of paralytic shellfish poisoning (PSP) caused by *Alexandrium tamiyavanichii* in Kuantan Port, Pahang, East Coast of Malaysia

Normawaty Mohammad-Noor,¹* Aimimuliani Adam,¹ Po T. Lim,² Chui P. Leaw ^(D),² Winnie L.S. Lau,² Guat R. Liow,² Noraslinda Muhamad-Bunnori,³ Nurul-Ashima Hamdan,³ Azlan Md-Nor,⁴ Norazizah Kemat⁴ and Devaraj Muniandi⁴

¹Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia, ²Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia, ³Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia and ⁴Department of Fisheries Pahang, Biosecurity Fisheries Unit, Kuantan, Malaysia

SUMMARY

Harmful algal bloom (HAB) is a proliferation of algae, which naturally produce biotoxins and cause harmful effects to humans, the environment and organisms associated with it. Paralytic shellfish poisoning (PSP) was reported for the first time in Kuantan Port, Pahang, Malaysia, in November 2013, followed by a second episode in August 2014. The toxicity level reported during the second event was as high as 3500 µg of STX equiv./100 g shellfish. Ten people were hospitalized with PSP symptoms after consuming contaminated shellfish. This study was conducted at Kuantan Port to identify the organisms responsible for these events. Water samples were collected monthly for a period of 12 months beginning in September 2014. HAB species were identified based on their morphology using light and fluorescence microscopes, and their classification was supported by molecular evidence based on internal transcribed spacer (ITS) sequences. Monthly cell abundance of Alexandrium tamiyavanichii was measured at four sampling stations. Toxin production by three strains isolated from the area was determined using HPLC. Our results revealed the presence of several HAB species, including the PSP-producing species A. tamiyavanichii. The highest cell density of A. tamiyavanichii was 840 cells L^{-1} . The presence of GTX components was detected in these strains. However, other toxin components could not be determined. This study reported, for the first time, the presence of PSP-producing A. tamiyavanichii on the Pahang coast of east Peninsular Malaysia and confirmed that the PSP events in Kuantan Port were attributable to this species. The presence of this species further indicates that several safety measures need to be considered to safeguard public health, particularly in Pahang coastal waters.

.....

Key words: cell abundance, gonyautoxin, harmful algal bloom, shellfish.

.....

INTRODUCTION

Harmful algal bloom (HAB) has been reported in Malaysia since 1976 (Roy 1977) and they are mainly caused by *Pyrodinium bahamense*. Since the first incident, reoccurrences of HAB caused by different species of dinoflagellates have been observed. These HAB species include *Pyrodinium* bahamense var. compressum (Roy 1977), Cochlodinium polykrikoides (Anton et al. 2008), Alexandrium tamiyavanichii (Usup et al. 2002; Kon et al. 2015), Alexandrium minutum (Lim et al. 2006), Gymnodinium catenatum (Mohammad-Noor et al. 2010) and Karlodinium australe (Lim et al. 2014).

Paralytic shellfish poisoning (PSP) was the first shellfish poisoning case reported in Malaysia. The first incident was recorded in Kota Kinabalu, Sabah (Fig. 1a) almost two decades ago and was caused by P. bahamense var. compressum (Roy 1977). The second PSP case was caused by A. tamiyavanichii in Sebatu, Malacca (Fig. 1a) (Usup et al. 2002: Lim et al. 2012). During this incident, mussels were banned from consumption, which caused losses for mussel breeders. A third case was reported in Tumpat, Kelantan (Fig. 1a) and resulted in one human fatality and six hospitalizations due to the consumption of contaminated shellfish (Lim et al. 2004. 2005). In this PSP incident, A. minutum was identified as the causative organism. To date, nine species of Alexandrium have been identified from Malaysian waters, including A. tamiyavanichii, A. minutum, A. taylorii, A. ostenfeldii (=A. peruvianum), A. affine, A. leei, A.cf. tamarense, A. tamutum and A. andersonii (Usup et al. 2002; Lim et al. 2005; Hii et al. 2012; Roziawati et al. 2016). Among those, A. minutum and A. tamiyavanichii, which have caused PSP problems in Malaysia, and other Alexandrium species, i.e., A. taylorii, A. ostenfeldii (=A. peruvianum), and A.cf. tamarense, have been shown to produce less than 1 fmol cell⁻¹ of PSP toxin (Lim et al. 2005, Lim & Ogata 2005).

Environmental factors, such as nutrient concentrations, weather conditions and physico-chemical parameters, are known to play important roles in bloom occurrences (Mohammad-Noor *et al.* 2012, 2014). High cell densities of *Pyrodinium* and *Cochlodinium* in Sabah coastal waters were positively correlated with seasonal monsoons, nutrients, physical parameters and geomorphology (Adam *et al.* 2011). An increased cell density of *Alexandrium* spp. was found in areas with high nutrient concentrations (Kon *et al.* 2015). Additionally, toxicity is also related to environmental

*To whom correspondence should be addressed. Email: normahwaty@iium.edu.my Communicating Editor: Kazuhiro Kogame Received 17 August 2016; accepted 1 July 2017.