Received: 21 November 2016

Revised: 30 May 2017

(wilevonlinelibrary.com) DOI 10.1002/isfa.8683

Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models

Khairudin Nurulhuda,^{a,b} Donald S Gaydon,^c Qi Jing,^d Mohamad P Zakaria,^e Paul C Struik^f and Karel J Keesman^{b*}

Abstract

Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application.

© 2017 The Authors. *Journal of the Science of Food and Agriculture* published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: nitrogen; dynamic model; flooded soil; flooded rice

INTRODUCTION

Nitrogen (N) fertiliser is applied in flooded rice systems to increase grain production, but not all applied N will be absorbed by the rice crop.¹ The total N loss in fertilised and flooded rice systems can reach up to 50% of the total N applied, and may occur through several pathways, such as ammonia (NH₃) volatilisation, nitrogen oxides (NO_x) emissions from simultaneous nitrification and denitrification, and N leaching.^{2–5} Although our aim is to increase grain production, it is also equally important to minimise total N loss from fertilised and flooded rice systems to reduce production costs and negative environmental outcomes.^{6,7}

As an alternative to a conventional experimental approach, many semi-physical N dynamics models for simulating N dynamics in flooded soil systems have been developed over the last 30 years.^{5,8-16} Simulations of system behaviour by these models under different conditions provide insights into the underlying mechanisms, and are useful in evaluating management practices to reduce N losses and increase grain production. However, the interactive, non-linear and time-varying N processes in flooded soil systems have resulted in models of different complexities. Consequently, model selection for a specific research application is challenging.

Jayaweera and Mikkelsen¹⁷ reviewed the concepts and performance of physically based models developed for the estimation of NH₃ volatilisation in flooded soil systems without a rice crop and in the absence of other N processes; for example, models of Bouwmeester and Vlek,¹⁸ Moeller and Vlek,¹⁹ and Jayaweera and Mikkelsen.⁹ Benbi and Richter²⁰ reviewed the objectives and capabilities of about 20 soil N dynamics models, but the reviewed models were not applied to simulate N dynamics in flooded rice systems. Nieder and Benbi²¹ reviewed models of carbon (C) and N dynamics in a soil-plant-atmosphere system, but few models were selected to illustrate different modelling concepts. Giltrap *et al.*²² and Gilhespy *et al.*²³ specifically reviewed the development and performances of DeNitrification-DeComposition (DNDC) variants, while Keating *et al.*²⁴ provided an overview on the Agricultural Production Systems Simulator (APSIM).

- * Correspondence to: KJ Keesman, Biobased Chemistry and Technology, Wageningen University, PO Box 17, 6700 AA Wageningen, Netherlands. E-mail: karel.keesman@wur.nl
- a Biological and Agricultural Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- b Biobased Chemistry and Technology, Wageningen University, Wageningen, Netherlands
- c CSIRO Agriculture and Food, Brisbane, Australia
- d Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- e Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
- f Centre for Crop Systems Analysis, Wageningen University, Wageningen, Netherlands

© 2017 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.