

## Continued increase of CFC-113a (CCl<sub>3</sub>CF<sub>3</sub>) mixing ratios in the global atmosphere: emissions, occurrence and potential sources

Karina E. Adcock<sup>1</sup>, Claire E. Reeves<sup>1</sup>, Lauren J. Gooch<sup>1</sup>, Emma C. Leedham Elvidge<sup>1</sup>, Matthew J. Ashfold<sup>2</sup>, Carl A. M. Brenninkmeijer<sup>3</sup>, Charles Chou<sup>4</sup>, Paul J. Fraser<sup>5</sup>, Ray L. Langenfelds<sup>5</sup>, Norfazrin Mohd Hanif<sup>1</sup>, Simon O'Doherty<sup>6</sup>, David E. Oram<sup>1,7</sup>, Chang-Feng Ou-Yang<sup>8</sup>, Siew Moi Phang<sup>9</sup>, Azizan Abu Samah<sup>9</sup>, Thomas Röckmann<sup>10</sup>, William T. Sturges<sup>1</sup>, and Johannes C. Laube<sup>1</sup>

<sup>1</sup>Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
<sup>2</sup>School of Environmental and Geographical Sciences, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
<sup>3</sup>Air Chemistry Division, Max Planck Institute for Chemistry, Mainz, Germany
<sup>4</sup>Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
<sup>5</sup>Oceans and Atmosphere, Climate Science Centre, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Australia
<sup>6</sup>Department of Chemistry, University of Bristol, Bristol, UK
<sup>7</sup>National Centre for Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
<sup>8</sup>Department of Atmospheric Sciences, National Central University, Taipei, Taiwan
<sup>9</sup>Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
<sup>10</sup>Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands

Correspondence: Karina Adcock (karina.adcock@uea.ac.uk)

Received: 20 October 2017 – Discussion started: 10 November 2017 Revised: 16 February 2018 – Accepted: 9 March 2018 – Published: 9 April 2018

Abstract. Atmospheric measurements of the ozonedepleting substance CFC-113a (CCl<sub>3</sub>CF<sub>3</sub>) are reported from ground-based stations in Australia, Taiwan, Malaysia and the United Kingdom, together with aircraft-based data for the upper troposphere and lower stratosphere. Building on previous work, we find that, since the gas first appeared in the atmosphere in the 1960s, global CFC-113a mixing ratios have been increasing monotonically to the present day. Mixing ratios of CFC-113a have increased by 40 % from 0.50 to 0.70 ppt in the Southern Hemisphere between the end of the previously published record in December 2012 and February 2017. We derive updated global emissions of  $1.7 \text{ Gg yr}^{-1}$  on average between 2012 and 2016 using a two-dimensional model. We compare the long-term trends and emissions of CFC-113a to those of its structural isomer, CFC-113 (CClF<sub>2</sub>CCl<sub>2</sub>F), which still has much higher mixing ratios than CFC-113a, despite its mixing ratios and emissions decreasing since the 1990s. The continued presence of northern hemispheric emissions of CFC-113a is confirmed by our measurements of a persistent interhemispheric gradient in its mixing ratios, with higher mixing ratios in the Northern Hemisphere. The sources of CFC-113a are still unclear, but we present evidence that indicates large emissions in East Asia, most likely due to its use as a chemical involved in the production of hydrofluorocarbons. Our aircraft data confirm the interhemispheric gradient as well as showing mixing ratios consistent with ground-based observations and the relatively long atmospheric lifetime of CFC-113a. CFC-113a is the only known CFC for which abundances are still increasing substantially in the atmosphere.