Morphological and molecular evidence for the recognition of *Hypoglossum sabahense* sp. nov. (Delesseriaceae, Rhodophyta) from Sabah, Malaysia

Michael J. Wynne¹*, Mitsunobu Kamiya², John A. West³, Susan Loiseaux-de Goër⁴, Phaik-Eem Lim⁵, Ahemad Sade⁶, Hannah Russell⁷ and Frithjof C. Küpper⁷,⁸

¹University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, MI 48108, USA
²Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
³School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
⁴11, rue des Moguerou, F-29680 Roscoff, Brittany, France
⁵Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
⁶Department of Fisheries, Sabah, Kota Kinabalu 88624, Sabah, Malaysia
⁷School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, Scotland, UK
⁸Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

Culture isolates of the genus *Hypoglossum* (Delesseriaceae, Rhodophyta) were obtained and their development and morphological structure over many years were followed in the laboratory. Molecular data (*rbcL*, large subunit ribosomal DNA, and cytochrome *c* oxidase subunit I) were obtained from these strains and evidence presented to recognize the new species: *Hypoglossum sabahense* from Sabah, Malaysia. Because various aspects of morphology in culture specimens differ significantly from types based on field specimens we have to rely mainly on the molecular criteria in ascribing a new taxonomic name here. This also is complicated by the major lack of molecular phylogenetic evidence for *Hypoglossum* and other Delesseriaceae. The ‘Germling Emergence Method’ and ‘serendipity’ are proving valuable in discovering significant new taxa from laboratory cultures which otherwise might never be known.

Key Words: COI; Delesseriaceae; *Hypoglossum*; LSU; Malaysia; new species; *rbcL*

INTRODUCTION

The world's coasts are underexplored for their macroalgal diversity. In remote locations, phycologists are often constrained by limited time in the field and / or rudimentary laboratory facilities. Also, in tropical coral reef locations, much of the actual macroalgal diversity may not be conspicuous during diving surveys due to the naturally intense grazing activity in such ecosystems (e.g., Freshwater et al. 2017). In this context, the development of the Germling Emergence Method has enabled numerous new records and discoveries of macroalgal taxa around the world (Peters et al. 2015). The approach consists of collecting substratum samples in sterile tubes...