Isotope constraints of the strong influence of biomass burning to climate-forcing Black Carbon aerosols over Southeast Asia

Junwen Liu\textsuperscript{a,b,c,f}, August Andersson\textsuperscript{c}, Guangcai Zhong\textsuperscript{b}, Xiaofei Geng\textsuperscript{b}, Ping Ding\textsuperscript{d}, Sanyuan Zhu\textsuperscript{b}, Zhineng Cheng\textsuperscript{b}, Mohamad Pauzi Zakaria\textsuperscript{e}, Chui Wei Bong\textsuperscript{e}, Jun Li\textsuperscript{b}, Junyu Zheng\textsuperscript{a,f}, Gan Zhang\textsuperscript{b,*}, Örjan Gustafsson\textsuperscript{c,*}

\textsuperscript{a} Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
\textsuperscript{b} State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
\textsuperscript{c} Department of Environmental Science, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
\textsuperscript{d} State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
\textsuperscript{e} Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
\textsuperscript{f} Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China

HIGHLIGHTS

\begin{itemize}
\item We performed a one-year sampling campaign for BC observation in a receptor site of SE Asia.
\item \(^{14}\text{C}\) measurements showed that ~50% of BC was contributed by biomass burning on average during the sampling period.
\item The contribution of biomass burning in BC significantly increased in the spring season.
\end{itemize}

GRAPHICAL ABSTRACT

\begin{figure}

\end{figure}

ABSTRACT

Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (\(^{14}\text{C}\)) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015–December 2016). The annual average \(^{14}\text{C}\) signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The \(^{14}\text{C}\)-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.

© 2020 Elsevier B.V. All rights reserved.